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Independent Identically Distributed (IID)

• Data set D = {(xi, yi)}Ni=1 is composed of N samples that are independently drawn from
the same joint distribution p(x, y), i.e.,

(xi, yi) ∼ p(x, y).

• A learning algorithm is built to learn

p(y|x) = p(x, y)

p(x)
.
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Classic Statistical Assumption - IIDness & IID Learning
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Discriminative Learning with IID Assumption

• Learn a posteriori distribution p(y|x)
• Model:

— e.g., Classification and Clustering models

• Assumption:

— xi ⊥ xj

— p(yi|xi)
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Generative Learning with IID Assumption

• Learn the joint probability p(x, y)

— Learning p(x|y) with p(y)
— Bayes’ theorem: p(y|x) = p(x|y)p(y)/p(x)

• Models:

— e.g., generators

• Assumption:

— xi ⊥ xj

— yi ⊥ yj
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Examples: IID Distance Measures and Functions

• Samples are IID.

• Variables are random

— Euclidean distance: d(x1,x2) = ∥x1 − x2∥
— Hamming distance: d(s1, s2) =

∑M
i=1 δ(s1[i], s2[i])

— Mahalanobis distance: d(x1,x2) =
√

(x1 − x2)TS−1(x1 − x2))

Questions & Thinking: What if samples are dependent and follow different distributions?
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Statistics of IID Data

• Variance of samples: σ2 = 1
N−1

∑N
i=1(xi − µ)2

• Covariance of variables: cov(x,y) = 1
N−1

∑N
i=1(xi − µx)(yi − µy)

• Cross entropy: H(p, q) = −
∫
X p(x) log q(x)dx

• KL-divergence / Relative entropy: D(p||q) = H(p, q)−H(p)

Questions & Thinking: What if samples and distributions are dependent?

8 / 101



Example: IID K-means

• K-means:

— Target:
argminS

∑K
k=1

∑
xi∈Sk

∥xi − µk∥
— xi is a individual sample.
— Sk is a individual cluster.

• What Makes K-means IID?

— Sample IIDness: all samples are
independent.

— Cluster IIDness: all clusters are
independent.

— Global to local: Global partition → local
distribution
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Example: IID Decision Tree

• Objective functions:

— (x, y) = (x1, x2, x3, · · · , xk, y)
—

EA(IG(T, a))︸ ︷︷ ︸
Expected Information Gain

= I(T ;A)︸ ︷︷ ︸
Mutual Information between T and A

= H(T )︸ ︷︷ ︸
Entropy (parent)

− H(T |A)︸ ︷︷ ︸
Weighted Sum of Entropy (Children)

= −
K∑
i=1

pi log2 pi −
∑
a

p(a)
K∑
i=1

−Pr(i|a) log2 Pr(i|a).

• Note: (1) T : The data set, (2) A: An attribute, (3) a: A value of A, (4) x: a sample, (5)
y: a label, (6) K: The number of classes, (7) pi : the probability of class i, and (8) pa:
the probability of value a.
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Example: IID Decision Tree

• Questions & Thinking:

— What if objects xk and xj are
dependent?

— What if values a1 and a2 are
dependent?

— What if classes i1 and i2 have
different distributions?
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Example: IID KNN

??

Questions & Thinking:

• What if samples are dependent?

• What if neighbors are dependent?

• What if samples are drawn from different distributions?

12 / 101



Example: IID K-fold Cross Validation & Sampling, Batching

Randomly sample k-folds
Questions & Thinking:

• What if the samples in the data are
non-IID?

• What if the samples in the training set are
non-IID?

• What if the samples in the training and the
test sets are non-IID? i.e., OOD problem
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Potential Risk of IID Learning

• Results delivered by IID learning on non-IID data could be:

— incomplete
— partial characterization
— biased
— misleading

• Many ‘benchmarks’ may be unfair and wrong.

• Questions & Thinking:

— Why does learning bias exist?
— Beyond fitting issues, what other issues may have caused learning bias?
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Independent Identically Distributed (IID)

• Data set D = {(xi, yi)}Ni=1 is composed of N samples that are independently drawn from
the same joint distribution p(x, y), i.e.,

(xi, yi) ∼ p(x, y).

• A learning algorithm is built to learn

p(y|x) = p(x, y)

p(x)
.

• Question:

— Learning p(y|x) in terms of p(yi|xi) on each sample xi.
— What if (xi, yi) and (xj , yj) are coupled (non-independent)?
— What if (xi, yi) ∼ pi(x, y) and (xj , yj) ∼ pj(x, y) are coupled (non-identically distributed)?
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Independent Identically Distributed (IID)

• xi = (xi1, xi2, · · · , xiD) is d-dimensional vector.

• What if features xi and xj (i, j ∈ [D]) are not independent?

• What if features xi and xj (i, j ∈ [D]) are not identically distributed? i.e., pi(x) and
pj(x) are different?

• What if label classes yi and yj (i, j ∈ [K]) are dependent?

• What if label classes yi and yj (i, j ∈ [K]) follow different distributions pi(y) and pj(y)?
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Beyond Statistical IID: Non-IIDness

• Statistical IID: Independence + Identical Distribution

• Non-IID case: variables and their data hold non-independence and non-identical
distribution.

• Non-independence expands to diverse interactions, couplings, and entanglement
(interaction for short).

• Non-identical distribution expands to comprehensive heterogeneities.

• Heterogeneities and interactions go beyond statistical IID and form the general
non-IIDness 1 2 3.

1L. Cao. Beyond i.i.d.: Non-IID thinking, informatics, and learning. IEEE Intell. Syst., 37(4), pp. 5–17,
2022.

2L. Cao. Non-IIDness Learning in Behavioral and Social Data, The Computer Journal, 57(9), pp. 1358-1370,
2014.

3L. Cao. Coupling Learning of Complex Interactions, IP&M, 51(2), pp. 167-186, 2015.
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Beyond IID: IID to Non-IID Space

Two perspectives:

• Statistical independence and distribution

• Beyond statistics interactions and heterogeneities

Four quadrants:

• IID

• Non-I

• I + Non-ID

• Non-IID
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Concept of Non-IIDness

• Heterogeneities and interactions form the general non-IIDnesses.

• Heterogeneities

— Aspects: behavior, action, value, variable, object, partition, modality, view, source, etc.
— Properties: frequency, type, format, structure, dimension, direction, distribution, etc.

• Interactions

— Within and between values, attributes, objects, sources, aspects, · · ·
— Structures, distributions, relations, · · ·
— Methods, models, · · ·
— Results, targets, impact, · · ·
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Aspects of Non-IIDness

The terminology and conceptual map
of non-IIDness beyond statistical IID:

• Non-ID - heterogeneities

• Non-I - interactions

21 / 101



Interactions vs. General Relations 4

• Types: numerical, categorical, textual, mixed structure, syntactic, semantic,
organizational, social, cultural, economic, uncertain, unknown/latent relation, etc.

• Interaction goes beyond existing relations including dependence, correlation, association,
and causality.

• Mathematically, association, causality, correlation, and dependence are specific,
descriptive, explicit, etc.

• Interactions: explicit + implicit, qualitative + quantitative, descriptive + deep, specific
+ comprehensive, local + global, etc.

4C. Wang, F. Giannotti, and L. Cao. Learning Complex Couplings and Interactions. IEEE Intell. Syst. 36(1),
pp. 3-5, 2021.
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IID Thinking vs. Non-IID Thinking 5

• IID thinking transforms a complex system
to be IID.

• Non-IID thinking transforms the problem
to be non-IID, where non-IIDnesses are
characterized and incorporated into the
problem-solving system.

5https://datasciences.org/non-iid-learning/
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Quantifying Heterogeneity and Interaction

• Quantifying and incorporating heterogeneity and interaction into non-IID frameworks.

• Quantifying Heterogeneities:

— quantifying heterogeneous objects (e.g., formats and distributions)
— quantifying heterogeneity properties (e.g., features, granularity)
— formulating heterogeneity aspects in terms of their quantified properties (e.g., types and

dynamics of features)

• Quantifying Interactions:

— mathematical relation learning/modeling (e.g., dependence)
— deep interaction modeling and learning (by deep latent relations)
— coupling learning (e.g., coupled object similarity learning 6 and unsupervised heterogeneous

coupling learning)

6C. Wang, X. Dong, F. Zhou, L. Cao, C. Chi, Coupled Attribute Similarity Learning on Categorical Data,
IEEE Transactions on Neural Networks and Learning Systems, 26(4): 781-797, 2015.
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Example: Group Behavior Interactions 7

Behavior interactions in a group are often associated with varying coupling relationships, for
instance, conjunction or disjunction.

Robocup soccer competition. Relationships between coupled behaviors.
7C. Wang, L. Cao, C. Chi. Formalization and Verification of Group Behavior Interactions. IEEE T. Systems,

Man, and Cybernetics: Systems 45(8): 1109-1124 (2015)
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Example: Coupled Representation Learning (UNTIE) 8

• Target: unsupervised
representation learning for
categorical data

• Idea: UNTIE first transforms the
coupling spaces to multiple
kernel spaces. Then, UNTIE
learns the heterogeneities within
and between couplings in these
kernel spaces by solving a kernel
k-means objective.

8C. Zhu, L. Cao, and J. Yin, Unsupervised Heterogeneous Coupling Learning for Categorical Representation.
IEEE Trans. Pattern Anal. Mach. Intell. 44(1): 533-549, 2022.
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Example: Coupled Representation Learning (UNTIE)

• Mapping categorical data to intra-attribute coupling space:

M(i)
Ia =

{
m

(i)
Ia

(
v
(j)
i

)
|v(j)i ∈ Vj

}
• Mapping categorical data to inter-attribute coupling space:

M(i)
Ie =

{
m

(i)
Ie

(
v
(j)
i

)
|v(j)i ∈ V (j)

}
• Mapping coupling spaces to multiple kernel spaces:

Kp =


kp(m1,m1) kp(m1,m2) · · · kp(m1,mn∗

v
)

kp(m2,m1) kp(m2,m2) · · · kp(m2,mn∗
v
)

...
...

. . .
...

kp(mn∗
v
,m1) kp(mn∗

v
,m2) · · · kp(m2,mn∗

v
)


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Example: Coupled Representation Learning (UNTIE)

• Mapping heterogeneous kernel space to a final representation:

Sij =

nk∑
p=1

K⊤
p,i·ωpKp,i·

• kernel k-means-based representation learning:

min
H,ω

Tr
(
S(In0

−HH⊤)
)

s.t. H ∈ Rn0×n0 ,

HH⊤ = Inc
.
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Experiments

Clustering F-Score with Different Embedding Methods.
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Question

Do Deep Neural Networks Capture Non-IIDnesses?

• What non-IIDnesses they can capture?

• What non-IIDnesses they cannot capture?
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Example: Convolutional Neural Network (CNN) 9

• CNN exploits spatial locality by enforcing a local connectivity pattern between neurons of
adjacent layers.

• CNN explores the spatial couplings between an input feature and its neighbors.

9H. Lee, R. B. Grosse, R. Ranganath, A. Y. Ng, Convolutional deep belief networks for scalable unsupervised
learning of hierarchical representations. ICML 2009: 609-616
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Example: Recurrent Neural Network (RNN) 10

• RNN uses internal state (memory) to process arbitrary sequences of inputs.

• RNN explores the temporal couplings between an input feature and its context.

10A. Graves, J. Schmidhuber, Offline Handwriting Recognition with Multidimensional Recurrent Neural
Networks, NIPS, 545-552, 2008.
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Example: Transformer 11

• Transformer relies on the attention
mechanism.

• Transformer explores the couplings
between features.

Transformer for Vision

Transformer for Language

11A. Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR
2021.
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Issues of Deep Learning

• Deep neural networks cannot capture:

— Distribution Discrepancy → Distributional Vulnerability
— Feature Causation / Hierarchicalization → Excessive Reliance
— Data Heterogeneity → Biased Representation
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Consequence: Distributional Vulnerability 12

• Reasons: Distribution Discrepancy

— Networks merely focus on learning to predict labels for
training samples, i.e., in-distribution.

— Networks cannot access the samples drawn from distributions
different from that of the training samples, i.e.,
out-of-distribution.

— Networks ignore the distribution discrepancy between in-
and out-of-distribution samples.

• Results:

— Networks could provide unexpected high-confidence
predictions for out-of-distribution samples!

— Out-of-distribution detection

12Z. Zhao, L. Cao, and K.-Y. Lin, Revealing the distributional vulnerability of discriminators by implicit
generators, IEEE Trans. Pattern Anal. Mach. Intell., 45(7): 8888-8901, 2023.
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Consequence: Excessive Reliance 13

• Reasons: Feature Causation / Hierarchicalization

— Networks merely focus the spurious features that are
unrelated to the core concept, i.e., green pastures and deserts.

— Networks discard the invariant features that are related to
the core concept, i.e., cows and camels.

— Networks ignore the couplings between spurious and invariant
features, i.e., cows in green pastures and camels in deserts.

• Results:

— Networks cannot generalize to samples with covariare shift!
— Out-of-distribution generalization and domain adaptation

13M. Arjovsky, L. Bottou, I. Gulrajani, D. Lopez-Paz, Invariant Risk Minimization, CoRR, 2019.
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Consequence: Biased Representation 14

• Reasons: Data Heterogeneity

— Training samples are heterogeneous.
— Networks will be misled by samples from

different distributions.

• Results:

— Networks converge poorly!
— Federated Learning

14Kairouz et al., Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 14(1-2):
1-210, 2021.
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Concept: Deep Non-IID Learning

Deep non-IID learning refers to the deep learning of non-IIDnesses in data, behaviors,
and systems.

Deep non-IID learning aims to

• address non-IID challenges (such as distributional vulnerability caused by
out-of-distribution) existing in deep learning theories and systems;

• identify, represent, analyze, discover, and manage data non-IIDnesses by new deep learning
theories and approaches;

• develop non-IID deep learning theories and systems that enable non-IID learning by deep
neural networks and following deep learning principles.
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Approaches: Deep Non-IID Learning

• Coupled representation learning: couplings within inputs, between inputs and hidden
features, and between inputs and outputs

• Deep variational learning: statistical learning + deep learning, e.g., Bayesian deep
learning

• Information theoretic deep learning: information theory + deep learning

• Non-IID deep neural learning: novel deep neural networks addressing non-IIDnesses
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Deep Non-IID Learning Tasks and Applications

In deep learning frameworks:

• Coupled Representation Learning

• Distribution Discrepancy Estimation

• Out-of-distribution Detection

• Out-of-distribution Generalization

• Domain Adaptation

• Federated Learning
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Deep Representation Learning 15

• Tasks: learning representations of the data to extract useful information by deep neural
networks.

• Issues:

— Ignore the distribution discrepancy between training and test samples, i.e., OOD
generalization and detection issues.

— Ignore the complex couplings between features and values.
— Ignore the heterogeneous and hierarchical couplings of samples.

15Y. Bengio, A. C. Courville, and P. Vincent, Representation Learning: A Review and New Perspectives. IEEE
Trans. Pattern Anal. Mach. Intell. 35(8): 1798-1828, 2013.
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Coupled Representation Learning

• Coupled Representation Learning: Integrating coupling learning with deep
representation learning

• Challenges:

— Learning input/attribute couplings and interactions
— Learning hidden feature couplings
— Learning observable and hidden feature couplings
— Learning hierarchical couplings
— Learning contextual interactions
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Coupled Collaborative Filtering (CoupledCF) 16

• Key: Explore the explicit and implicit couplings within/between users and items.

CNN-based
network learns
explicit user-item
couplings.

DeepCF learns implicit
user-item couplings. CoupledCF jointly learns explicit and implicit

user-item couplings.

16Q. Zhang, L. Cao, C. Zhu, Z. Li and J. Sun. CoupledCF: Learning Explicit and Implicit User-item Couplings
in Recommendation for Deep Collaborative Filtering, IJCAI2018
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Coupled Collaborative Filtering (CoupledCF)
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Metric-based Auto-Instructor (MAI) 17

• Key: Explore the heterogeneous couplings between categorical and numerical features.

• Plain features: concatenation of one-hot representation of categorical data and numerical
data.

• Coupled features: product kernel of numerical variable and categorical value:

p(axi , vj) =
1

N

N∑
k=1

{
Lλ(v

k
j , vj)W (

aki − axi
hi

)

}

17S. Jian, L. Hu, L. Cao, and K. Lu. Metric-based Auto-Instructor for Learning Mixed Data Representation.
AAAI2018
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Metric-based Auto-Instructor (MAI)

• Distance metric:

Dp(hp,hp
i ) = (hp − hp

i )W3(h
p − hp

i )
⊤

Dc(hc,hc
i ) = (hc − hc

i )W4(h
c − hc

i )
⊤

• P-Instructor and C-Instructor over triplets:

LΘp = −
∑

⟨x,xi,xj⟩

logPΘp

(
Dp

i > Dp
j |δ

c
hc

)
LΘc = −

∑
⟨x,xi,xj⟩

logPΘc

(
Dc

i > Dc
j |δ

p
hp

)
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Heterogeneous relations-Embedded Recommender System (HERS) 18

• Key: Explore three heterogeneous relations: user-user, item-item, and user-item.

18L. Hu, S. Jian, L. Cao, Z. Gu, Q. Chen, A. Amirbekyan. HERS: Modeling Influential Contexts with
Heterogeneous Relations for Sparse and Cold-start Recommendation, AAAI2019
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Heterogeneous relations-Embedded Recommender System (HERS)

Item recommendation for test users of Delicious and Lastfm
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Distribution Discrepancy Estimation

• Task: Evaluate the discrepancy between two probability distributions given their
corresponding samples.

• Assumption: Samples from each distribution are independent.

• Challenge: Estimate the distributional discrepancy and non-IIDness between two datasets.
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Maximum Mean Discrepancy with A Deep Kernel (MMD-D) 19

• Key: Explore the distributional discrepancy between two datasets by deep kernels.

• Insight: Kernels constructed by deep neural nets can adapt to variations in distribution
smoothness and shape over space.

• Model: √
E [kw(x, x′) + kw(y, y′)− 2kw(x, y)],

kw(x, y) = [(1− ϵ)k1(ϕw(x), ϕw(y)) + ϵ]k2(x, y),

x, x ∼ p, y, y′ ∼ q.

19F. Liu, W. Xu, J. Lu, G. Zhang, A. Gretton, and D. J. Sutherland, Learning deep kernels for non-parametric
two-sample tests, ICML, pp. 6316–6326, 2020.
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Experiments

Average test power over the MNIST dataset.
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H-divergence 20

• Key: Explore the distributional discrepancy between two datasets by empirical risk
minimization.

• Insight: Two distributions are different if the optimal decision loss is higher on their
mixture than on each individual distribution.

• Model:
ϕ(ϵu(h

∗
u)− ϵp(h

∗
p), ϵu(h

∗
u)− ϵq(h

∗
q)),

h∗
u ∈ argmin

h∈H
ϵu(h), h

∗
q ∈ argmin

h∈H
ϵq(h), h

∗
p ∈ argmin

h∈H
ϵp(h).

20S. Zhao, A. Sinha, Y. He, A. Perreault, J. Song, and S. Ermon, Comparing distributions by measuring
differences that affect decision making, ICLR, pp. 1–20, 2022.
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Experiments

Average test power over the MNIST dataset.
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Out-of-distribution Detection 21

Focusing on distributional discrepancy between
in- and out-of-samples:

• In-distribution (ID) samples: Test
samples drawn from the same unknown
distribution of training samples.

• Out-of-distribution (OOD) samples:
Test samples drawn from distributions
differing from the unknown distribution.

• Over-confidence Problem: A network
learned from ID samples could assign
high-confidence predictions for OOD
samples.

21J. Yang, K. Zhou, Y. Li, and Z. Liu, Generalized out-of-distribution detection: A survey, CoRR, pp. 1–20,
2021
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Out-of-distribution Detection

• Task: identify whether a test sample is drawn from an ID or OOD.

• Assumption:

— ID samples are applied to train a network.
— ID and OOD samples are drawn from different distributions.
— OOD samples are with semantic shift w.r.t. ID samples.

• Challenge

— explore the distributional discrepancy between ID and OOD samples.
— explore the non-IIDnesses between ID and OOD samples.
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Maximum over Softmax Probabilities (MSP) 22

• Key: Distinguish ID and OOD samples according to OOD scores, and ID and OOD
samples are expected to own high and low scores, respectively.

• Metric: AUROC can be interpreted as the probability that an ID sample has a greater
score than an OOD sample.

• Insight: Correctly classified examples tend to have greater maximum softmax probabilities
than erroneously classified and out-of-distribution examples.

• Model: S(x) = maxy qθ(y|x)

22D. Hendrycks and K. Gimpel, A baseline for detecting misclassified and out-of-distribution examples in
neural networks, ICLR, 2017, pp. 1–12.
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Experiments
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Fine-tuning Discriminators by Implicit Generators (FIG) 23

• Key: Explore the non-IIDness between ID
and OOD samples by generating specific
OOD samples for a given pretrained
network.

• Insight: An OOD sample with
high-confidence prediction has low entropy.

• Method:

— Derive an implicit generator for a
pretrained network without training.

— Drawn OOD samples from the implicit
generator.

— Fine-tune a pretrained network with its
specific OOD samples.

23Z. Zhao, L. Cao, and K.-Y. Lin, Revealing the distributional vulnerability of discriminators by implicit
generators, IEEE Trans. Pattern Anal. Mach. Intell., 45(7): 8888-8901, 2023.
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Insight

• Prediction: A pretrained network learned from ID samples

qθ(y|x) =
exp fθ(x, y)∑

y′∈[C] exp fθ(x, y
′)
.

It will provide unexpected high-confidence predictions for OOD samples.

• Shannon Entropy: An OOD sample with high-confidence prediction has low entropy

Hθ,x(C) = −
∑
y∈[C]

qθ(y|x) log qθ(y|x).

• Generator: An implicit generator is proportional to the negative entropy

qθ(x) ∝
exp (−Eθ(x))∫

exp (−Eθ(x′)) dx′ ,

Eθ(x) ≜
∑
y∈[C]

fθ(x, y) (1− exp fθ(x, y)) .
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Experiments

OOD detection
performance of
FIG in terms of
AUROC
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Learning from Cross-class Vicinity Distribution (LCVD) 24

• Key: Explore the non-IIDness between ID
and OOD samples by considering the
vicinity distributions of ID samples.

• Insight: An OOD input generated by
mixing multiple in-distribution inputs does
not belong to the same classes as its
constituents.

• Method:

— Construct the OOD samples of an ID
sample by combining it with different
classes of ID samples.

— Maximize the cross-entropy loss on OOD
samples to encourage low confidence.

24Z. Zhao, L. Cao, and K.-Y. Lin, Out-of-distribution Detection by Cross-class Vicinity Distribution of
In-distribution Data, IEEE Trans. Neural Networks Learn. Syst., 2023.
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Algorithm Framework

• Derive the generic expected risk:

R(θ) =−
∫

logQθ(y|x)dPI(x, y) +

∫
log(1−Qθ(y|x))dPO(x, y).

• Construct vicinity distribution:

P̃I(x, y) =
1

NI

NI∑
i=1

δ(x = xI
i , y = yIi ) for ID samples,

P̃O(x, y) =
1

NI

NI∑
i=1

ExI
1
. . .ExI

M−1

[
δ
(
x = xO, y = yO

)]
for OOD samples.

• Estimate the generic empirical risk:

R̃(θ) = −
NI∑
i=1

logQθ(y
I
i |xI

i )−
NO∑
j=1

log
(
1−Qθ(y

O
j |xO

j )
)
.
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Experiments

OOD detection performance
of LCVD in terms of
AUROC
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Experiments

OOD samples
drawn from the
cross-class vicinity
distribution of the
training ID
samples in
Mini-Imagenet
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Dual Representation Learning (DRL) 25

• Key: Explore the non-IIDness within ID
samples by exploring strongly and weakly
label-related information.

• Insight:

— A single network cannot capture all the
label-related information.

max I(D;Y)− βDI(X ;D).

— Considering more label information
makes networks harder to provide
high-confidence predictions for OOD
samples.

original

weakly label-related information

strongly label-related information

ferretmalamute carrier vase slot orange

25Z. Zhao and L. Cao, Dual Representation Learning for Out-of-distribution Detection, Transactions on
Machine Learning Research, 2023.
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Algorithm Framework

• Strongly label-related representation is obtained from a pretrained network:

d = gϕ(x).

• Weakly label-related representation is obtained by integrating multiple representations
different from the strongly label-related representation:

c =

∞∑
i=1

wizi = fθ(x,d).

• Coupling the two representations to calculate an OOD score:

S(x) = max
y∈[1,K]

(h(c, y) + h(d, y)) /2.
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Experiment
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Out-of-distribution Generalization 26

• Task: learn a model from the source domain that can generalize to an unseen domain.
• Assumption:

— ID and OOD samples are drawn from different distributions.
— OOD samples are with covariate shift w.r.t. ID samples.
— OOD samples are unavailable in the training phase.

• Challenge: explore the non-IIDness between source and unseen domains.

26K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, Domain generalization: A survey, IEEE Trans. Pattern
Anal. Mach. Intell., 45(4): 4396–4415, 2023.
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Mixup 27

• Key: Explore the distributional
discrepancy between ID and OOD samples
by augmenting ID samples.

• Insight: Convex combinations of pairs of
examples and their labels can alleviate the
memorization and sensitivity issues to
adversarial examples.

• Model: Virtual feature-target vectors,

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj .

27H. Zhang, M. Ciss‘e, Y. N. Dauphin, and D. Lopez-Paz, mixup: Beyond empirical risk minimization, ICLR,
pp. 1–13, 2018.
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Experiments

Validation errors for ERM and mixup on the development set of ImageNet-2012.
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Invariant Risk Minimization (IRM) 28

• Key: Explore the distributional
discrepancy between ID and OOD samples
by developing spurious and invariant
correlations.

• Insight: Find a data representation such
that the optimal classifier on top of that
representation matches for all
environments.

• Model:

min
Φ:X 7→H,Φ:X 7→H

∑
e∈εtr

Re(w ◦ Φ)

s.t.w ∈ argw:H7→Y minRe(w ◦ Φ),∀e ∈ εtr

28M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, Invariant risk minimization, CoRR, pp. 1–31, 2019.
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Experiments

Average errors on causal (plain bars) and non-causal (striped bars) weights for our synthetic
experiments.
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Representation Self-Challenging (RSC) 29

• Key: Explore the discrepancy between ID
and OOD samples by sufficiently
developing label-related information.

• Insight: Discarding the dominant features
activated on the training data can force
the network to activate remaining features
that correlate with labels.

• Model: Masking out the bits associated
with larger gradients,

z̃ = z⊙m

29Z. Huang, H. Wang, E. P. Xing, and D. Huang, Self-challenging improves cross-domain generalization,
ECCV, pp. 124–140, 2020.
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Experiments

DG results on PACS.
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Domain Adaptation 30

• Task: learn a model from the source domain that can generalize to a target domain.

• Assumption:
— Samples from source and target domains are non-IID.
— Few samples from the target domain are available in the training phase.

• Challenge: explore the domain discrepancy and non-IIDness between source and target
domains.

30J. Wang, C. Lan, C. Liu, Y. Ouyang, and T. Qin, Generalizing to unseen domains: A survey on domain
generalization, IJCAI, pp. 4627–4635, 2021.
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Domain-Adversarial Neural Network 31

• Key: Explore the domain discrepancy between source and target domains by extracting
the shared knowledge between the two domains.

• Insight: adversarially trains the generator and discriminator to find a representation such
that the domains cannot be distinguished from each other while correctly classifying the
source samples.

• Model:

Ẽ(θf , θy, θd) =
1

n

n∑
i=1

Ly(Gy(Gf (xi; θf ); θy), yi)

− λ

(
1

n

n∑
i=1

Ld(Gd(R(Gf (xi); θf ); θd), di) +
1

n′

N∑
i=n+1

Ld(Gd(R(Gf (xi); θf ); θd), di)

)
.

31Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. S.
Lempitsky, Domain-adversarial training of neural networks, J. Mach. Learn. Res., vol. 17, pp. 1–59, 2016.
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Architecture
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Experiments

Examples of domain pairs.

Classification accuracies for digit image classifications for different source and target domains.
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Deep CORAL 32

• Key: Explore the domain discrepancy between source and target domains by aligning the
correlations between layer activations in networks.

• Model:

lCORAL =
1

4d2
∥CS − CT ∥2F

CS =
1

nS − 1

(
DT

SDS −
1

nS

(
1TDS

)T (
1TDS

))
CT =

1

nT − 1

(
DT

TDT −
1

nT

(
1TDT

)T (
1TDT

))

32B. Sun and K. Saenko, Deep CORAL: correlation alignment for deep domain adaptation, ECCV Workshops,
pp. 443–450, 2016.
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Deep CORAL

Sample Deep CORAL architecture based on a CNN with a classifier layer.
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Experiments

Object recognition accuracy for all 6 domain shifts on the standard Office dataset with deep
features.
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Adversarial Partial Domain Adaptation by Cycle Inconsistency 33

• Partial domain adaptation (PDA):

— Target label space is a subset of the source label space.
— Classes absent in the target domain as outlier classes and the other classes as shared classes.

• Challenge: A transfer model performs even worse than a source-only model which is
trained solely in the source domain.

• Key: Explore the non-IIDness between source and target domains by exploiting the cycle
inconsistency.

33K.-Y. Lin, J Zhou, Y. Qiu, and W.-S. Zheng, Adversarial Partial Domain Adaptation by Cycle Inconsistency,
ECCV, pp. 530-548, 2022.
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Insight

• It is impossible for a source sample of outlier classes to find a target sample of the same
category due to the absence of outlier classes in the target domain.

• It is possible for a source sample of shared classes.
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Model

• Sample weight:

ws
i = G(Tt→s(Ts→t(F (xs

i ))))[y
s
i ] + λwe

s
iG(Ts→t(F (xs

i )))[y
s
i ].

• Cross-domain feature transformation functions:

Ts→t(z
s) =

K∑
k=1

esim(zs,ct
k)∑K

l=1 e
sim(zs,ct

l)
ctk, Tt→s(z

t) =

|Cs|∑
k=1

esim(zt,cs
k)∑|Cs|

l=1 e
sim(zt,cs

l )
csk.

• Prototypes:

csk ← λmcsk + λ̄m

∑B
i=1 δ(y

s
i = k)xs

i∑B
i=1 δ(y

s
i = k)

, ctk ← λmctk + λ̄m

∑B
j=1 δ(ŷ

t
j = k)xt

j∑B
j=1 δ(ŷ

t
j = k)

.
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Experiments

Comparison with the state-of-the-art methods on Office-31 and VisDA-2017 in terms of ACC.
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Non-IID Federated Learning 34 35

• Task: personalized learning on heterogeneous local
data/devices without data sharing for privacy and
security.

• Assumption:

— A server and multiple heterogeneous and
independent clients

— iterative learning with server-client parameter
messaging

• Challenge:

— explore the heterogeneities between clients;
— Some clients may be coupled or interactive.

34L. Cao. Non-IID Federated Learning. IEEE Intell. Syst. 37(2): 14-15, 2022
35A.Z. Tan, H. Yu, L. Cui, and Q. Yang, Towards personalized federated learning, IEEE Trans. Neural

Networks Learn. Syst., 2022.
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FedAVG 36

• Key: Explore the heterogeneity between clients by iterative model averaging.

• Model:

min
w∈Rd

K∑
k=1

nk

n
Fk(w),

Fk(w) =
1

nk

∑
i∈pk

fi(w).

36B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, Communication-Efficient Learning of
Deep Networks from Decentralized Data, AISTATS, pp. 1273-1282, 2017.
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Experiments

Monotonic learning curves for the large-scale language model word LSTM.
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Personalized FedAvg 37

• Key: Explore the heterogeneity between clients by iterative model averaging and
model-agnostic meta-learning.

• Model:

min
w∈Rd

K∑
k=1

nk

n
Fk(w),

Fk(w) =
1

nk

∑
i∈pk

fi(w − α∇fi(w)).

37A. Fallah, A. Mokhtari, and A. E. Ozdaglar, Personalized Federated Learning with Theoretical Guarantees:
A Model-Agnostic Meta-Learning Approach, NeurIPS, pp. 1-12, 2020.
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Experiments

Comparison of test accuracy of different algorithms given different parameters.
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pFedMe 38

• Key: Explore the heterogeneity between clients by Moreau envelopes.

• Model:

min
w∈Rd

K∑
k=1

nk

n
Fk(w),

Fk(θk) =
1

nk

∑
i∈pk

fi(θk) +
λ

2
∥θk − w∥2.

38C. T. Dinh, N. H. Tran, and T. D. Nguyen, Personalized Federated Learning with Moreau Envelopes,
NeurIPS, pp. 1-12, 2020.
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Experiments

Comparison using fine-tuned hyperparameters.
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Bayesian Federated Learning 39

• Key: Exploring non-IIDnesses in federated
systems by Bayesian learning.

• Task: stronger model robustness and
learning improved performance on
small-scale data.

• Challenge: integrates the advantages of
Bayesian learning into Federated Learning.

39L. Cao, H. Chen, X. Fan, J. Gama, Y. Ong, and V. Kumar, Bayesian Federated Learning: A Survey, IJCAI,
2023.
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Non-IID Learning: A Challenging Problem

• Data Non-IIDnesses

• Data Sampling biases

• Non-IID Metrics

• Non-IID Representations

• Model Structure

• Objective Functions

• Result Interpretation

• New Perspectives
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IID to Non-IID Learning Systems40

40L. Cao, P. S. Yu, Z. Zhao: Shallow and Deep Non-IID Learning on Complex Data. KDD 2022: 4774-4775
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Further Research Questions: Non-IID Learning

• How do non-IIDnesses present in a system or its behaviors and data?

• How to measure and evaluate whether a dataset is non-IID?

• Do deep neural networks capture non-IIDnesses? To what extent?

• How to design an DNN to explore a specific non-IIDness from data?
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Further Research Questions: Deep Learning

• Distribution Discrepancy Estimation: How to evaluate the couplings between two
datasets and the couplings between samples?

• Federated learning: How to consider the non-IIDnesses within and between weakly
coupled/interactive local sources, tasks, and models?

• OOD detection: How to measure the non-IIDnesses including/beyond distributional
discrepancy between ID and OOD samples? How to measure the non-IIDnesses between
OOD samples with semantic and covariate shifts?

• Domain Adaptation: How to measure the non-IIDnesses between source and target
domains? How to decide whether the knowledge from the source domain can be
transferred to the target domain according to the non-IIDnesses?
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Relevant Resources

• Non-IID Learning: https://datasciences.org/non-iid-learning/

• KDD’2022 tutorial Shallow and Deep Non-IID Learning on Complex Data, KDD’2022

• IJCAI2019 tutorial Non-IID Learning of Complex Data and Behaviors

• KDD2017 tutorial on Non-IID Learning, with Tutorial Slides; and Youtube video part 1
and Youtube video part 2.
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https://datasciences.org/non-iid-learning/
https://datasciences.org/publication/shallow-deep-noniid-learning.pdf
https://datasciences.org/publication/Non-IID%20Learning-CAO-Full.pdf
https://datasciences.org/publication/KDD2017Tutorial.pdf
https://www.youtube.com/watchv=3RwyGoiYcLg
https://www.youtube.com/watchv=So0GNQiF9vE


Thank you!

Comments & suggestions:
Zhilin.Zhao@mq.edu.au and Longbing.Cao@mq.edu.au

The Data Science Lab: www.datasciences.org
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